

第四章 認識高溫 適應高溫

4.1 身體熱調節機制

(一)人體如何調節高溫?

人為恆溫動物,因應環境溫度變化,透過對流、輻射、傳導、蒸發排汗四種方式來散熱。人體正常體溫約37℃,正常變動範圍介於0.5-1.0℃左右。當身體調節功能異常時,會造成身體容易蓄熱,體溫若持續上升,將可能出現熱傷害,人體調節體溫方式如下圖4-1。

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」:本團隊重製 圖4-1 人體調節體溫之方式

♀ (二)熱傷害的機轉

人體對高溫有一定的適應能力,但一旦超過極限,就會產生病變,當人體熱量不容易散發時,熱相關疾病便會發生,其造成之損害,有可能表現在生理功能、代謝過程和免疫系統,其熱效應對身體機能的影響,如圖4-2。

當運動產生和由環境獲得的熱量超過身體散熱速度,可能造成體内熱量不斷蓄大量出汗等方式散熱,大量水分及電解質流失會造成血液濃稠度增加,影響血液循環系統及中樞神經的調節功能,進而對身體造成傷害。

無論室外或室内,當處於高溫、高濕的環境下,身體無法正常調節溫度時,就有可能發生熱傷害,嚴重者更可能導致器官衰竭甚至死亡。

◎資料來源:國立成功大學「我國民眾熱傷害健康識能之評估及調查與傳播策略發展計畫」:本團隊重製 圖4-2 熱效應對身體機能的影響

4.2 高溫預警及判斷

(一)高溫預警資訊

中央氣象於2018年6月15日發布「高溫資訊」及環保署的「戶外運動指南」,「高溫資訊」之定義為最高氣溫上升至攝氏36度以上之現象,可分為黃、橙及紅三個燈號,提供不同燈號情況下之警語内容(表4-1) ;另外考量運動生理狀態「戶外運動指南」(表4-2)則是將高溫定於35℃,因正常人的體表溫度約36.8℃,若氣溫超過35℃,人體的熱量將會不易散發,汗液不容易蒸發,會感覺到非常難受。

表4-1 高溫資訊提供之警語内容

燈號顏色 注意事項 1. 減少戶外活動及勞動,避免劇烈運動、注意防曬、多補充水份、慎防熱 傷害。 黃色燈號 2. 室內保持通風及涼爽,適時採取人體或環境降溫的方法,如搧風或利用 冰袋降溫等。 36°C以上 3. 適時關懷老人、小孩、慢性病人、肥胖、服用藥物、弱勢族群、戶外工 作或運動者,減少長時間處在高溫環境。 1. 避免非必要的戶外活動、勞動及運動,注意防曬、多補充水份、慎防熱 橙色燈號 2. 室內保持通風及涼爽,建議採取人體或環境降溫的方法,如搧風或利用 36°C連續3日 冰袋降溫等。 或38°C以上 3. 關懷老人、小孩、慢性病人、肥胖、服用藥物者、弱勢族群、戶外工作 或運動者,遠離高溫環境。 1. 避免戶外活動,若必要外出時請注意防曬、多補充水份、慎防熱傷害。 紅色燈號 2. 進入室內, 人體或環境降溫的方法, 如搧風或利用冰袋降溫等。 3. 關懷並妥善安置老人、小孩、慢性病人、肥胖、服用藥物、弱勢族群、 38°C連續3日 戶外工作或運動者,遠離高溫環境。

◎資料來源:中央氣象局

表4-2	温度	措施	戶外運動指南					
戶外運動指南	超過35℃	運動終止	溫度高於皮膚溫度,應立即停止運動。					
	31∼35°C	高度戒備	高中暑風險,應避免馬拉松或其他劇烈運動,如果體 力下降、不舒服,應立即停止運動,並補充水分。					
	28∼31°C	<u> </u>	中暑的風險提高,運動時須積極休息、補充水分。 劇烈運動每30分鐘就要休息一次。					
	24~28°C	注意	運動間需積極補充水分。					
	24℃至	安全	中暑機率較低,須留意水分補充。					

○資料來源:環境保護署

(二)如何判斷環境高溫的危險程度?

中央氣象局的天氣預報中顯示「實際溫度」,亦提供「體感溫度」供民眾參考。這是因為「體感溫度」與大氣溫度、溼度、風速、日照量和人體基礎代謝率等因素有關,可以反映人們真正感覺到的冷暖程度,當天氣熱時,加上空氣中溼度越高,人體皮膚表層散熱不易,會感受到較實際氣溫還要高的溫度。台灣夏季通常相對濕度在75%~85%,體感溫度通常都偏高,因此當體感溫度超過37℃時,請大家務必做好防曬準備,避免中暑。若我們都能了解自己身體可以承受環境的能力,就能確實應對溫度變化所產生的身體機制。

為使民眾更加了解如何得知每日體感溫度,衛生福利部國民健康署繪製一個體 感溫度對照表(表4-3),依據三步驟(圖4-3)即可透過找到對應的體感溫度。假設氣 象局預測今天的溫度為35℃,在風速為2.5m/s的狀況下,

若相對濕度為50%,體感溫度為38℃(比實際溫度高3℃)。

若相對濕度為70%,體感溫度為40℃(比實際溫度高5℃)。

若相對濕度為90%,體感溫度為42℃(比實際溫度高7℃)。

步驟一

從縱軸找出當天氣溫。

體咸溫度三步驟

步驟二

從橫軸找出當天相對濕度。

步驟三

將當天氣溫往右延伸,當天相對濕度 往下延伸,兩個交叉落點即為當天的 體感溫度。

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」:本團隊繪製 圖4-3 獲取體感溫度三步驟

表4-3

體感溫度對照書

		相對濕度(%)												
		50	55	60	65	70	75	80	85	90	95	100		
氣溫 (°C)	40	45	45											
	39	43	44	45	45				>45°C					
	38	42	42	43	44	44								
	37	40	41	42	42	43	44	44	45	45				
	36	39	40	40	41	41	42	43	43	44	44	45		
	35	38	38	39	39	40	40	41	42	42	43	43		
	34	36	37	37	38	38	39	40	40	41	41	42		
	33	35	36	36	37	37	38	38	39	39	40	40		
	32	34	34	35	35	36	36	37	37	37	38	38		
	31	32	33	33	34	34	35	35	36	36	36	37		
	30	31	32	32	32	33	33	34	34	34	35	35		
	29	30	30	31	31	31	32	32	33	33	33	34		
	28	29	29	29	30	30	30	31	31	32	32	32		
	27	27	28	28	28	29	29	29	30	30	31	31		
	26	26	26	27	27	27	28	28	28	29	29	29		
	25	25	25	25	26	26	26	27	27	27	28	28		
	24	24	24	24	25	25	25	25	26	26	26	27		
□ 體感	溫度小虎	於等於氣	溫	體感溫』	度大於氣	溫	體感溫.	度大於等	∮於37℃	體	感温度オ	於45℃		

風速在2.5m/s下的體感溫度參考數值

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」;本團隊繪製

4.3 熱傷害

(一)熱傷害的種類

熱傷害是一種急性疾病的統稱,根據症狀由輕到重依序熱暈厥、熱痙攣、熱衰 竭及熱中暑,其發病徵狀如圖4-4。

- 1. 熱暈厥:在高溫下,表面皮膚血管擴張,血液循環受到影響,使供應大腦及身體的血液減少而引起暈厥,主要徵狀有暈眩、皮膚濕冷、脈搏減弱等。
- 2.熱痙攣:當身體運動量過大、大量流失鹽份,造成的電解質不平衡,使肌肉抽搐。
- 3. 熱衰竭: 大量出汗嚴重脫水,導致水份與鹽份缺乏所引起的血液循環衰竭,可視為「熱中暑」的前期,患者可能出現無力倦怠、眩暈、頭痛、噁心嘔吐、皮膚濕冷、臉色蒼白、心跳加快等徵狀。
- 4. 熱中暑: 熱衰竭進一步惡化, 引起中樞神經系統失調 (包括體溫調節功能失

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」:本團隊重製 圖4-4 熱傷害種類

(二)熱傷害高危險群

熱傷害高危險族群包括老弱婦孺、長期生病的人、工作者、運動員、慢性病 患者(小)血、呼吸道疾病、精神疾病等)及其他(行動不便或生活無法白理者、接受 特定接受藥物治療者、肥胖者)屬於熱傷害的高危險群(圖4-5)。

長期生病的人 慢性疾病患者

(如高血壓、糖尿病、 腎臟病、心肺疾病等)

身體循環功能較差, 進而不易排汗,對於 環境溫度的調節及應 變能力差。

代謝疾病者 (如甲狀腺機能亢進)

患者代謝率高,易產 熱蓄積體內。

精神疾病患者

患者生活自理能力下 降,或對冷熱刺激的 適應性差。

65歲以上的長者

因皮膚汗腺萎縮,循 環系統功能下降,使 排汗緩慢,散熱不加

嬰幼兒

體溫調節系統尚未發 展成熟,且體積小散 熱慢,代謝率高,較 難適應高溫環境。

孕產婦

懷孕或產後會消耗大 量體力,因而調節溫 度能力較差。

作者及運動員

戶外工作者 (如勞工、農夫等)

高勞動性工作且長時 間陽光曝曬使身體不 易散熱。

密閉空間工作者 (如廚師、船輪漁工等)

因環境通風或散熱不 良使不易排熱。

運動員

運動會產生大量的熱 ,當散熱速度太慢, 就容易有熱傷害。 可透過漸進式的專業 熱適應訓練,提高對 熱環境的耐受性,以 **降低熱傷害的發生。**

行動不便或 生活無法自理者

無法自行補充水分, 或因行動不便無法調 節通風(開窗或空調) 、自行增減衣服。

服用特定藥物者

正在服用如利尿劑、 抗精神病藥劑,抗組 織胺、抗乙醇膽鹼藥 等,會引起血管收縮 ,抑制排汗,降低散 熱功能。

肥胖者(BMI≥27)

皮下脂肪肥厚者較不 易散熱,導致熱量蓄

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」:本團隊繪製 圖4-5 熱傷害高危險群

戶外工作者、運動員等應隨時留意自己及身邊同事的身體狀況,做適當的休息 並補充水分;室内密閉高溫環境者則需注意補充水分與通風,適當休息,除上述内 容外,熱傷害預防包含保持涼爽、補充水分、及提高警覺等三要訣,以下詳細說明。

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」;本團隊重製 圖4-6 保持涼爽說明及示意圖

(二)補充水份(圖4-7)

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」:本團隊重製 圖4-7 補充水分說明及示意圖

認識高溫 適應高溫

(三)提高警覺(圖4-8)

●雇主應安排相關 課程,使員工認 識熱傷害的症狀 ,以提升預防知 識。

LIFE 7:25 PM

●隨時注意氣象局 發布的天氣預報 ,選擇氣溫較低 的日期安排戶外 活動。

提高警覺說明及示意圖

●透過社區里長的 高溫廣播特報、 衛教單張發送等 ,提高里民的警 覺性。

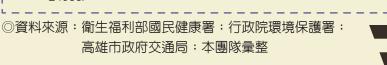
●撐陽傘、戴寬邊 帽、太陽眼鏡以 及塗抹防曬乳液

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」;本團隊重製 圖4-8 提高警覺說明及示意圖

預防熱傷害衛教專區

預防高溫,你該知道的事

戶外工作者或運動 者應每小時補充 2.4杯水(1杯為 240cc)。


穿著輕便、淺色、 寬鬆、透氣的衣服

選擇節能住宅或節 能電器:室内加裝 遮光窗簾。

多利用大眾運輸系 統、共享運具。

4.5 熱傷害急救

熱傷害種類中以熱中暑最為嚴重,若無及早、適當處置,將對身體造成嚴重傷害,甚至導致死亡,死亡率約30-80%。

認識高溫 適應高溫

♀ (一)急救五步驟:蔭涼、脫衣、散熱、喝水及送醫,如圖4-9。

1. 將患者從高溫環境 移至陰涼通風處。

2. 鬆脫衣物、足部稍微抬高、 平躺休息,若有嘔吐現象則 側躺保持呼吸道暢通。

3.全身皮膚噴灑水,儘速通風(如搖扇) 以促進出汗與排汗,或將冰袋(毛巾 包覆冰塊或冰涼飲料罐)放置於頸部 、腋窩和鼠蹊部。

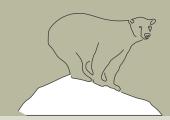
4. 意識清醒者可給予稀釋之電解質飲料(如運動飲料) 或加少許鹽的冷開水(不可含酒精或咖啡因)。而 患者意識不清時,不可給予飲水。

5. 儘快送醫處理(可撥打119或自行送醫)。

◎資料來源:衛生福利部國民健康署「高溫?熱傷害?你需要知道的事!」;本團隊重製 圖4-9 熱傷害急救五步驟

♀ (二)熱傷害急救不可做以下三件事情

- 1.患者意識不清之下時不可給予飲水,患者會嗆到,反而造成危險。
- 2.不可使用酒精擦拭患者身體,因為會造成體溫劇降,身體無法承受。
- 3.不可使用退燒藥,中暑造成的體內高溫是因為外在環境與體內產熱所致, 跟感冒發燒不同,退燒藥無助於體內散熱。

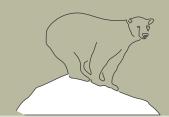


結語 邁向宜居城市

在氣候變遷的影響下,極端氣候事件的發生頻率大幅增加,尤其是高溫事件,全球因暖化的緣故使熱浪變成一種常態,且發生頻率增加、持續時間越長,目前台灣有超過半數的人□居住在都會區,人□密集、柏油道路、水泥建築加上廢棄熱能排放等助長增溫的因素,使熱島效應越來越嚴重,城市儼然成為一個大型悶燒鍋,因此,各國均針對熱浪啟動應變對策,目的是將高溫帶來的衝擊降到最低。

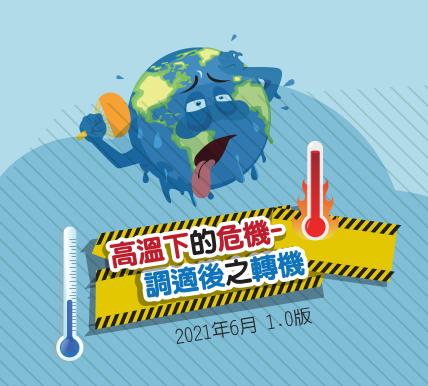
中央氣象局於今(2021)年3月30日發布高溫資訊,在南投縣、台南市、高雄市及屏東縣近山區或河谷將出現36度以上高溫發生機率,創下2018年6月15日有高溫燈號制度以來,最早發布的一次,預期在未來高溫發生頻率恐增加,市府未來將持續觀注熱浪的可能危害,並視情況啓動熱浪危害因應措施,如市區道路加強灑水、公園加強植栽澆灌面積、減少學生體育或戶外活動,並提供24小時緊急熱傷害服務等措施。同時呼籲,熱浪危害的高危險群,如65歲以上長者、嬰幼童、孕產婦、小孩、慢性病人、服用藥物者、肥胖者、弱勢族群、街友、戶外工作或運動者,應遠離高溫環境,此外,民眾於室内亦應保持通風及涼爽,可採取搧風或利用冰袋降溫等環境降溫的方法。

因應未來極端氣候造成的危害,為給予市民安心舒適的生活品質,市府將持續強化系統性防災能力,擴大綠覆率、推廣低碳運具,打造因地制宜「高雄厝」,形塑優質的綠色家園,並進而建構符合永續發展、健康舒適、節能減碳的國際化韌性宜居城市。



參考資料

- 1.BBC NEWS (2020)。環境:北極罕見最大臭氧洞終於得到修復。 (https://www.bbc.com/zhongwen/trad/science-52539155)
- 2.Benjamin Preiss. (2019) Melbourne to swelter under new climate projections. (https://www.theage.com.au/national/victoria/melbourne-to-swelter-under-new-climate-projections-20191020-p532es.html)
- 3.CAMS. Implemented by ECMWF as part of The Copernicus Programme. (https://atmosphere.copernicus.eu/)
- 4. CapitaGreen. (https://www.capitaland.com/sg/en.html)
- 5.City of Melbourne. Summer sense top tips to keep cool in the heat.
- 6.Global Carbon Project. (http://www.globalcarbonatlas.org/en/CO2-emissions)
- 7. Lawrence Berkeley National Laboratory. Heat Island Group. (https://heatisland.lbl.gov/)
- 8.Ruefenacht, Lea., Acero, Juan Angel. (2017). Strategies for Cooling Singapore-A catalogue of 80+ measures to mitigate urban heat island and improve outdoor ther mal comfort. ETH Library Research Collection.
- 9.MeN Go · (https://www.men-go.tw/)
- 10.Michelle D. Hawkins., Vankita Brown., Jannie Ferrell. (2017). Assessment of NOAA National Weather Service Methods to Warn for Extreme Heat Events.NOAA/National Weather Service, Silver Spring, Maryland.
- 11.Ellen Gray., Theo Stein. (2019). 2019 Ozone Hole is the Smallest on Record Since Its Discovery. (https://www.nasa.gov/feature/goddard/2019/2019-ozone-hole-is-the-smallest-on-record-since-its-discovery)
- 12.NRDC. (2013). Saving Money and Energy: Case Study of the Energy-Efficiency Retrofit of the Godrej Bhavan Building in Mumbai.
- 13.NRDC. (2015). Addressing Vulnerability to the Health Risks of Extreme Heat in Ur banising Ahmedabad, India.
- 14.NRDC. (2018). Cool Roofs: Protecting Local Communities and Saving Energy. Issue


Brief.

- 15.NRDC. (2019). Evaluation of Ahmedabad's Heat Action Plan: Assessing India's First Climate Adaptation and Early Warning System for Extreme Heat.
- 16.NRDC. (2019). Ahmedabad Heat Action Plan: Guide to Extreme Heat Planning in Ahmedabad, India.
- 17.NRDC. (2020). Frequently Asked Questions (FAQs) Cool Roofs.
- 18.Scripps Institution of Oceanography. The Keeling Curve. (https://keelingcurvef.ucsd.edu/)
- 19.SDGs. (https://sdgs.un.org/goals)
- 20.Shutterstock.(https://www.shutterstock.com/)
- 21. UNEP., UNEP DTU Partnership. (2020). Emissions Gap Report 2020.
- 22.UNFCCC. Glossary of climate change acronyms and terms. (https://unfccc.intprocess-and-meetings/the-convention/glossary-of-climate-change-acronyms-and-term s#g)
- 23.van Vuuren et al(2011). The Representative Concentration Pathways: An Oveview. Climatic Change, 109, 5-31. DOI 10.1007/s10584-011-0148-z.
- 24. Victoria State Government. (2020). Heat Health Plan for Victoria.
- 25. Victoria State Government. (2019). Victoria's Climate Science Report 2019.
- 26.WHO. Information and public health advice: heat and health. (https://www.who.int/globalchange/publications/heat-and-health/en/)
- 27.WMO. (2020). WMO Provisional Report on the State of the Global Climate 2020. (https://library.wmo.int/index.php?lvl=notice_display&id=21804#.YBNeuOgzbuq)
- 28.WMO., UNEP., NOAA., NASA., EC. (2018). Scientific Assessment of Ozone Deple tion: 2018. World Meteorological Organization Global Ozone Research and Monitoring Project—Report No. 58.
- 29.WOHA. (https://woha.net/)
- 30.中央氣象局。高溫資訊。(https://www.cwb.gov.tw/V8/C/)
- 31.中央氣象局數位科普網。(https://edu.cwb.gov.tw/PopularScience/)

- 32.天氣即時預報FB。(https://www.facebook.com/weather.taiwan/)
- 33.台灣生物多樣性網站。(https://www.tbn.org.tw/)
- 34.全球暖化相關公約。(http://wwwl.pu.edu.tw/~s1050421/Finalwork/b.html)
- 35. 行政院環境保護署(2020)。2020年中華民國國家溫室氣體清冊報告。
- 36.行政院環境保護署。建構社區綠屋頂。
- 37.行政院環境保護署。認識熱浪。
 (https://www.jinshan.ntpc.gov.tw/userfiles/3240800/files/%E8%AA%8D%E8%AD%98%E
 7%86%B1%E6%B5%AA.pdf)
- 38.高雄市水利局。第四章.世界水資源的起源。 (https://khnuk.weebly.com/277003603928304316872.html)
- 39.高雄市立圖書館總館。(https://www.ksml.edu.tw/)
- 40.高雄市立體綠化及綠屋頂官網。(https://build.kcg.gov.tw/greenroof/index.aspx)
- 41.高雄市政府工務局(2016)。高雄市推動建築物立體綠化及綠屋頂成果專輯。
- 42. 高雄市政府工務局(2017)。高雄市推動建築物立體綠化及綠屋頂成果專輯。
- 43. 高雄市政府工務局(2018)。高雄市推動建築物立體綠化及綠屋頂成果專輯。
- 44. 高雄市政府工務局(2019)。2019高雄厝成果專輯-高雄厝3.0幸福建築計畫。
- 45. 高雄市政府工務局(2019)。高雄市推動建築物立體綠化及綠屋頂成果專輯。
- 46.高雄市政府工務局(2019)。高雄居3.0幸福建築宣導計畫成果宣導專輯。
- 47. 高雄市政府工務局(2020)。打造熱帶地區的城市綠洲-高雄厝雄蓋涼。
- 48. 高雄市政府工務局(2020)。高雄市推動建築物立體綠化及綠屋頂成果專輯。
- 49.高雄市政府工務局大高雄自行車道網。(https://pwbgis.kcg.gov.tw/bicycle/)
- 50.高雄市政府工務局新建工程處。海洋文化及流行音樂中心新建工程。
 (https://ncd.kcg.gov.tw/ActivitiesDetailC002300.aspx?Cond=b2b8133c-3d3c-4909-bdc9-f074d173e90f)
- 51.高雄市政府工務局養護工程處(2013)。高雄市濕地生態廊道。
- 52.高雄市政府工務局養護工程處。(https://pwbmo.kcg.gov.tw/)
- 53.高雄市政府水利局。(https://wrb.kcg.gov.tw/)
- 54.高雄市政府交通局。(https://www.tbkc.gov.tw)

- 55.高雄市政府全球資訊網。認識高雄。(https://www.kcg.gov.tw/cp.aspx?n=07880B28C8E3 EAEA)
- 56.高雄市登革熱研究中心(2021)。登革熱快訊-110年第9期。
- 57.高雄市維基百科。(https://zh.wikipedia.org/wiki/%E9%AB%98%E9%9B%84%E5%B8%82)
- 58.高雄乘風而騎FB。(https://www.facebook.com/khbikekhbike/)
- 59.高雄旅遊網。(https://khh.travel/zh-tw/attractions/detail/222)
- 60.國立成功大學(2016)。「我國民眾熱傷害健康識能之評估及調查與傳播策略發展計畫」。
- 61.國家災害防救科技中心(NCDR)。全球災害事件簿。2019年歐洲六月與七月熱浪。 (https://den.ncdr.nat.gov.tw/1132/1188/1205/20844/45495/)
- 62. 康健編輯部(2020)。2020健康城市大調查。康健雜誌,第262期。天下生活出版股份有限公司。
- 63.推動高雄厝資訊網。高雄厝案例介紹。 (https://build.kcg.gov.tw/kaohsiunghouse/main04_5.aspx)
- 64. 陸象豫 (2016)。都市熱島效應。林業論壇,林業研究專訊 Vol. 23 No. 2。
- 65.雄健康-高雄市政府衛生局FB。(https://www.facebook.com/permlink.php?id=10490551 8024760&story fbid=105160564665922)
- 66.新加坡重建局。(https://www.ura.gov.sg/Corporate)
- 67.新加坡旅遊局。(https://www.visitsingapore.com.cn/)
- 68.新加坡國家公園局。(https://www.nparks.gov.sg/sbwr)
- 69.新加坡陸路交通局。(https://www.lta.gov.sg/)
- 70.新加坡濱海灣花園官方網站。(https://www.gardensbythebay.com.sg/en.html)
- 71.臺灣氣候變遷推估資訊與調適知識平台(TCCIP)。 (https://tccip.ncdr.nat.gov.tw/index.aspx)
- 72.劉安說(2013)。熱島效應解析都市為何像個烤爐?太空之眼雜誌2013.01~02月號。
- 73.衛生福利部疾病管制署。傳染病統計資料查詢系統。(https://nidss.cdc.gov.tw/nndss/disease?id=061)
- 74. 衛生福利部國民健康署(2018)。「高溫?熱傷害?你需要知道的事!」。
- 75.聯合報。(https://money.udn.com/money/story/10511/2498475)

高雄市政府環境保護局

Environmental Protection Bureau Kaohsiung City Government